解决业界“头疼”的残余元素问题实现再生钢铁原料高质化利用
汽车钢这类高端产品过去须用长流程工艺生产,而面对大幅降低全生命周期碳排放量的需求,长流程却无法实现。在原料结构调整、能源结构优化、流程简约高效3条减碳路径中,相对容易调整的还是原料结构。
“为此,使用低碳属性优异的再生钢铁原料生产低碳的高端产品,就成为迫在眉睫的技术选择。实现再生钢铁原料的高质化利用,残余元素的问题必须解决。”毛新平表示。
残余元素主要来源于两方面。一类是在初次冶炼过程中就没有完全剔除掉的、与生俱来的一些元素;另一类是在后续加工过程中,为了调整组织性能加入的元素,这些元素在二次或者多次使用过程中就成为残余元素。目前,这些残余元素大约有Cu、Ni、Cr、Mo等19种,容易导致偏析偏聚、热塑性低、铜脆等问题,恶化材料性能及其加工性。
毛新平表示:“过去再生钢铁原料主要用于生产建筑用钢等一般性产品,往往通过原料配比、稀释的方式调整残余元素,但在未来,再生钢铁原料成为钢铁生产的主要原材料之后,这条路径将不再可行。”
他坦言,再生钢铁原料的高质化利用是一项世界级难题。2020年,德国科学基金会与中国教育部启动“钢铁循环—面向碳中和的钢铁循环”合作项目,开展再生钢铁原料高质化利用的基础和应用基础研究;2021年,英国基金会设置研究机构,开展钢铁资源高效循环利用研究,目的是为英国钢铁资源高质化利用和钢铁工业碳中和提供最前沿的科学支撑。
毛新平分享了自己对于解决这项世界级难题路径的思考。他认为,在原料层面,要强化原料的分类管理,尽可能提高废钢智能分选的技术含量。“从基于外形、尺寸等的评级和分析发展到从化学成分的角度进行分类分级,这必然是未来的发展趋势。”他指出。
在冶炼层面,要尽可能剔除相应的残余元素,实现洁净化冶炼。“特别是大量使用废钢、采用电炉工艺时,会产生氮含量高的问题,这对生产汽车钢等材料是致命的。如何解决这一问题,也是全球的技术难题。”毛新平指出。
同时,在连铸层面,建立残余元素热力学数据库,明确残余元素的作用机制,形成残余元素无害化连铸集成技术;在制备加工层面,揭示残余元素对制备加工过程产品质量的影响机制,通过成分设计和工艺优化形成无害化加工技术。
在产品端,还需要研究残余元素赋存状态对材料服役性能的影响规律和作用机制,比如对成形性能、疲劳性能、氢致延迟开裂和焊接性能等的影响,进而研发出改善材料服役性能的残余元素调控技术。
“解决了这些问题,就基本能够生产出符合质量标准的合格产品。”毛新平表示,“还可以通过采用新的工艺技术,实现残余元素从有害到无害的转变,生产出高性能的钢铁材料。”例如,利用近终形制造快速凝固和直接轧制的技术特点,可以解决残余元素的偏析、偏聚的问题,提高容忍极限;充分发挥近终形特点和部分残余元素对材料强度、耐蚀性能的有益作用,研发出高性能的钢铁材料。
毛新平表示,基于行业发展需求,他们承接了国家自然科学基金委员会重大项目——“变革性低碳钢铁制造流程理论与技术”,开展一些基础研究工作,其中便设立了残余元素洁净脱除、残余元素耦合作用机理等相关课题。“只有把相关的基础科学问题和关键技术问题解决好,未来废钢的使用领域才会更广阔,废钢产业才能发展好。”毛新平强调。
【版权声明】本网为公益类网站,本网站刊载的所有内容,均已署名来源和作者,仅供访问者个人学习、研究或欣赏之用,如有侵权请权利人予以告知,本站将立即做删除处理(QQ:51999076)。