根据McKinsey11月29日发布的一份报告,通过应用机器学习、人工智能和基于物理的建模,建筑投资组合所有者可以更快地识别建筑脱碳机会。
通过使用来自卫星的数据、地理空间分析、法规、劳动力和设备成本,并评估供暖和冷却系统、绝缘水平以及太阳能或地热能的可行性,算法可以分析并提出解决方案,为建筑组合实现净零排放。
专家在报告中表示,通过这种新方法,可以在数周内为整个投资组合制定财务优化计划,其中考虑了监管环境以及建筑的独特特征和租赁结构。
见解
McKinsey的专家们表示,鉴于建筑物排放量占全球燃烧相关排放量的40%,因此必须到2030年将直接建筑排放量减少50%、间接排放量减少60%,才能在2050年实现建筑存量净零
碳排放。McKinsey表示,传统的脱碳方法,包括物理
能源审计和逐栋建筑的净零排放战略,被认为是费力且昂贵的。此外,缺乏集中库存和标准化导致人们认为建筑脱碳是无利可图的。
报告指出,与传统的能源审计和净零研究相比,人工智能驱动的方法将脱
碳规划的速度和规模提高了100倍以上,从而消除了对模糊建筑原型的依赖。
这强调了基于人工智能的方法在房地产投资组合中,中性或正回报的潜力,假设没有诸如未来增量监管、碳定价和租金或房地产估值的
绿色溢价等因素。该报告强调,在投资组合层面优化可再生能源采购的同时,为每座建筑实施能源效率和电气化措施,使建筑业主和居住者能够通过实现节能、优化资本成本和避免监管处罚来收回投资。
本+文`内.容.来.自:中`国`碳`排*放*交*易^网 t a np ai fan g.com
【版权声明】本网为公益类网站,本网站刊载的所有内容,均已署名来源和作者,仅供访问者个人学习、研究或欣赏之用,如有侵权请权利人予以告知,本站将立即做删除处理(QQ:51999076)。