为了应对全球气候变化和环境问题,越来越多的国家将“
碳中和”上升为国家战略。负碳技术通过捕集、贮存和利用二氧化碳以此抵消难减排的
碳排放而成为了实现
碳中和的重要途径,其中近年来快速发展、极具应用前景的二氧化碳电解技术受到广泛关注。
近日,中国科学院大连化学物理研究所(以下简称“大连化物所”)包信和院士、研究员汪国雄、研究员高敦峰团队在二氧化碳/一氧化碳电解制备燃料和化学品研究中取得新进展。团队揭示了碱性膜电解器中二氧化碳/一氧化碳电催化还原反应覆盖度驱动的选择性变化机制,并组装出千瓦级电堆,其电解性能是目前文献报道最高值。该成果可以实现钢厂尾气或者化工尾气的高值化利用,为二氧化碳/一氧化碳电解技术从实验室到实际应用提供了技术基础。相关成果发表在国际顶级学术期刊《自然—纳米技术》上。
通过利用可再生能源产生的电能,二氧化碳电解反应可以将二氧化碳转化为高附加值燃料和化学品。乙烯、乙酸和乙醇等多碳产物具有较高的能量密度和市场需求,是理想的电解产物。然而,在工业级电流密度下高选择性生成多碳产物仍然存在很大挑战。
本工作中,团队基于钢铁工业排放出大量的二氧化碳/一氧化碳混合尾气这一现状,通过改变进料气组成来调变碱性膜电解器阴极氧化铜催化剂的微环境,实现了在工业级电流密度下高效二氧化碳/一氧化碳电解制备多碳产物。随着进料气中一氧化碳压力的增加,电解主产物逐渐由乙烯转变为乙酸,且电流密度显著增加。
为进一步验证电解过程的可行性,团队组装了4节100 cm2的碱性膜电堆,其电解功率最高达到2.85 kW,在总电流为150 A时,乙烯的生成速率为457.5 mL min?1;在总电流为250 A时,乙酸的生成速率为2.97 g min?1。
“团队在电化学器件上进行了创新,研制了高性能碱性膜电解器件来电解二氧化碳/一氧化碳。”汪国雄介绍,“同时,我们通过改变反应气中一氧化碳分压来调控电极催化剂微环境,揭示了反应覆盖度驱动的选择性转变机制。”
该项研究不仅为单一多碳产物的定向生成提供了重要参考,而且为二氧化碳/一氧化碳电解从实验室走向实际应用提供了技术基础。
提及下一步研究方向,汪国雄说:“我们将进一步开展放大研究,研制大规模的碱性膜电堆和系统,提高在实际工况下的稳定性,实现在工业领域的示范运行。”
【版权声明】本网为公益类网站,本网站刊载的所有内容,均已署名来源和作者,仅供访问者个人学习、研究或欣赏之用,如有侵权请权利人予以告知,本站将立即做删除处理(QQ:51999076)。