“我们的人造森林就像绿色植物中的叶绿体。”杨说,“当阳光被吸收,光子在硅和二氧化钛纳米线中激发产生电子—空穴对,吸收不同频率的太阳光谱。光子产生的电子在硅中被传递给细菌用于还原二氧化碳,光子产生的空穴在二氧化钛中将水分子分解,产生氧气。”
本*文`内/容/来/自:中-国-碳^排-放“交|易^网-tan pai fang . c o m
纳米线阵列森林建成后,成为一种微生物群落的栖息地,这些微生物群落能产生特殊的酶,选择性地催化还原二氧化碳。在这一研究中,伯克利小组用的是一种叫做卵形鼠孢菌的厌氧菌,这种菌能很容易地直接从周围环境中获得电子,还原二氧化碳。 本+文内.容.来.自:中`国`碳`排*放*交*易^网 ta np ai fan g.com
“鼠孢菌是非常好的二氧化碳催化剂,同时生成醋酸盐,这是一种多功能化学中间体,可以制造多种有用的化学产品,”米歇尔·张说。“使用缓冲半咸水和少量维生素,我们可以在纳米线阵列中统一‘进驻’鼠孢菌。” 本+文+内/容/来/自:中-国-碳-排-放(交—易^网-tan pai fang . com
当鼠孢菌把二氧化碳还原成醋酸盐(或其它生物合成中间体)后,再由转基因大肠杆菌将其合成特殊的化学品。在他们的研究中,为了提高目标化学品产量,把鼠孢菌和大肠杆菌分离开来。将来催化与合成这两步可以合并为一个过程。
本+文+内.容.来.自:中`国`碳`排*放*交*易^网 t a np ai fan g.com
未来商业化展望 内-容-来-自;中_国_碳_0排放¥交-易=网 t an pa i fa ng . c om
研究人员指出,他们的人工光合作用系统成功的关键是分离目标要求,将提高光捕获效率和提高催化活性分开,纳米线/细菌混合技术使之成为可能。通过这种方式,伯克利小组在模拟阳光下实现的太阳能转化效率为0.38%,持续约200小时,与自然界中的树叶相仿。
本*文@内-容-来-自;中_国_碳^排-放*交-易^网 t an pa i fa ng . c om
他们用醋酸盐制造的定向化学品产量也得到提高——高达26%的丁醇(一种类似汽油的燃料)、25%的青蒿二烯(一种抗疟药青蒿素的前体)和52%的可再生生物降解塑料PHB。随着该技术进一步精炼,预计系统的性能还会提高。 禸嫆@唻洎:狆國湠棑倣茭昜蛧 τāńpāīfāńɡ.cōm
“目前我们正在研究第二代系统,把从太阳能到化学产品的转化效率提高到3%,”杨说,“等我们在成本效益上达到了10%的转化率,把这一技术推向商业化就切实可行了。”
本`文内.容.来.自:中`国`碳`排*放*交*易^网 t a npai fan g.com
【版权声明】本网为公益类网站,本网站刊载的所有内容,均已署名来源和作者,仅供访问者个人学习、研究或欣赏之用,如有侵权请权利人予以告知,本站将立即做删除处理(QQ:51999076)。